Optical microcavities as platforms for entangled photon spectroscopy

Optical microcavities are often proposed as platforms for spectroscopy in the single- and few-photon regime due to strong light-matter coupling. For classical-light spectroscopies, an empty microcavity simply acts as an optical filter. However, we find that in the single- or few-photon regime treati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Malatesta, Ravyn, Uboldi, Lorenzo, Kumar, Evan J, Rojas-Gatjens, Esteban, Moretti, Luca, Cruz, Andy, Menon, Vinod, Cerullo, Giulio, Ajay Ram Srimath Kandada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical microcavities are often proposed as platforms for spectroscopy in the single- and few-photon regime due to strong light-matter coupling. For classical-light spectroscopies, an empty microcavity simply acts as an optical filter. However, we find that in the single- or few-photon regime treating the empty microcavity as an optical filter does not capture the full effect on the quantum state of the transmitted photons. Focusing on the case of entangled photon-pair spectroscopy, we consider how the propagation of one photon through an optical microcavity changes the joint spectrum of a frequency-entangled photon pair. Using the input-output treatment of a Dicke model, we find that propagation through a strongly coupled microcavity above a certain coupling threshold enhances the entanglement entropy between the signal and idler photons. These results show that optical microcavities are not neutral platforms for quantum-light spectroscopies and their effects must be carefully considered when using change in entanglement entropy as an observable.
ISSN:2331-8422