Comparing Design Schemes and Infection Risk Assessment of Negative Pressure Isolation Cabin

At present, various public health emergencies have forced a deeper study of measures to prevent infectious diseases. To prevent the spread of infectious diseases on large cruise ships, the use of negative pressure isolation cabins is an effective method. However, existing cruise ships rarely use neg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-08, Vol.15 (17), p.12780
Hauptverfasser: Zhou, Shuwen, Zan, Yixin, Liu, Xiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At present, various public health emergencies have forced a deeper study of measures to prevent infectious diseases. To prevent the spread of infectious diseases on large cruise ships, the use of negative pressure isolation cabins is an effective method. However, existing cruise ships rarely use negative pressure isolation cabins or use them with shortcomings such as unreasonable layout of air inlets, which do not effectively reduce the risk of infection for medical staff while isolating patients. To solve this problem, first, the method of active air interference and the principle of proximity of the fresh air outlet were examined in this paper, and four groups of optimization schemes were designed. Second, by analyzing the diffusion of droplets in three breathing modes (coughing, sneezing, and talking while wearing or not wearing a mask), the direction of droplets and the efficiency of pollutant discharge under the condition of coughing were compared. Finally, in this paper, the infection risk of contact transmission and aerosol transmission was optimized by using the linear quantitative evaluation method and MSDR method, respectively. The results showed that the auxiliary air intake layout of optimal scheme 2 can effectively reduce the risk of infection for medical personnel in negative pressure isolation cabins. This study provides a useful reference for the design and optimization of negative pressure isolation cabins in future cruise ships.
ISSN:2071-1050
2071-1050
DOI:10.3390/su151712780