Assessment of Ground Water Quality of Lucknow City under GIS Framework Using Water Quality Index (WQI)
Continuous groundwater quality monitoring is crucial for ensuring safe drinking and irrigation by mitigating risks from geochemical contaminants through appropriate treatment methods. Therefore, the primary objective of this study was to assess the suitability of groundwater collected from Lucknow,...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-09, Vol.15 (17), p.3048 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuous groundwater quality monitoring is crucial for ensuring safe drinking and irrigation by mitigating risks from geochemical contaminants through appropriate treatment methods. Therefore, the primary objective of this study was to assess the suitability of groundwater collected from Lucknow, India, for both drinking and irrigation. Forty samples were collected from different sites within the study area to evaluate groundwater quality. Various parameters such as pH, turbidity, total dissolved solids (TDS), chlorides (Cl−), total alkalinity, total hardness, sulphate (SO42−), nitrate (NO3−), fluorides (F−), iron (Fe), arsenic (As), magnesium (Mg2+), and calcium (Ca2+) were analyzed. The weighted arithmetic water quality index (WAWQI), a vital rating system representing overall water quality, was employed to classify the water into different categories, such as very good, good, moderate, poor, and unfit for drinking. This classification is invaluable for public awareness and decision-making to make informed decisions regarding effective management, treatment, and sustainable societal development on a broader scale. A correlation matrix was generated and analyzed to observe correlations between the various parameters. Additionally, spatial distribution maps for the analyzed parameters and WQI were prepared using the inverse distance weighted (IDW) method. The study found that WQI values in the area ranged from 2.64 to 168.68, indicating good water quality in most places except for the Kukrail region, where the water quality is unfit for drinking purposes. The water quality map shows that 86% of the area falls under the very good category, 14.63% under good to moderate quality, and 0.37% is categorized as unfit for drinking. Consequently, the findings suggest that the groundwater in the studied area is safe and suitable for drinking and irrigation purposes. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w15173048 |