Highly uniform resistive switching characteristics of KGM resistive memory through air plasma technology

In this study, a highly stable resistive switching behavior was obtained by utilizing konjac glucomannan, a biomaterial, as a dielectric layer through a solution-based process, and the ITO bottom electrode was modified by using an air plasma technique. Electrical results showed that the pretreatment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-09, Vol.123 (10)
Hauptverfasser: Liu, Hao-Jung, Chang, Yu-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a highly stable resistive switching behavior was obtained by utilizing konjac glucomannan, a biomaterial, as a dielectric layer through a solution-based process, and the ITO bottom electrode was modified by using an air plasma technique. Electrical results showed that the pretreatment device did not observe significant switching characteristics (∼101). The device, which underwent additional plasma treatment, was recognized for its significant improvements in this area, demonstrating a reduced set voltage (Vset = 0.37 V) with a 6% coefficient of variation, more than 200 consecutive cycles, and up to 90% electrical yield. Moreover, the treated device exhibited a dramatically higher memory window (>104) due to the relatively low off-state current. According to the XPS and UPS analysis, the work function increased from an untreated 4.3 to 5.79 eV as the treatment time increased to 180 s. The conductive filaments, which stemmed from oxygen vacancies, were introduced through plasma treatment to enhance the proportion of oxygen vacancies in the ITO films, thereby creating a stable and consistent filament path. Consequently, the systematic and reproducible resistive switching phenomenon was intensified. The reported results confirmed that the reliability and uniformity in bioelectronic devices can be accomplished through a simple and effective plasma technique. This approach paved the way for alternative applications of these devices.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0154759