Implantable photonic neural probes for light-sheet fluorescence brain imaging
Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for high-speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demo...
Gespeichert in:
Veröffentlicht in: | Neurophotonics (Print) 2021-04, Vol.8 (2), p.025003-025003, Article 025003 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Significance: Light-sheet fluorescence microscopy (LSFM) is a powerful technique for high-speed volumetric functional imaging. However, in typical light-sheet microscopes, the illumination and collection optics impose significant constraints upon the imaging of non-transparent brain tissues. We demonstrate that these constraints can be surmounted using a new class of implantable photonic neural probes.
Aim: Mass manufacturable, silicon-based light-sheet photonic neural probes can generate planar patterned illumination at arbitrary depths in brain tissues without any additional micro-optic components.
Approach: We develop implantable photonic neural probes that generate light sheets in tissue. The probes were fabricated in a photonics foundry on 200-mm-diameter silicon wafers. The light sheets were characterized in fluorescein and in free space. The probe-enabled imaging approach was tested in fixed, in vitro, and in vivo mouse brain tissues. Imaging tests were also performed using fluorescent beads suspended in agarose.
Results: The probes had 5 to 10 addressable sheets and average sheet thicknesses |
---|---|
ISSN: | 2329-423X 2329-4248 |
DOI: | 10.1117/1.NPh.8.2.025003 |