Uncertainty principles of the fractional Clifford–Fourier transform
In this paper, we define the two‐sided fractional Clifford–Fourier transform (FrCFT). Using its properties, we get some uncertainty principles of the FrCFT. Two parts are obtained. One part is a modified uncertainty principle. The uncertainty principle states a lower bound on the spreads of two spec...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-10, Vol.46 (15), p.16105-16125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define the two‐sided fractional Clifford–Fourier transform (FrCFT). Using its properties, we get some uncertainty principles of the FrCFT. Two parts are obtained. One part is a modified uncertainty principle. The uncertainty principle states a lower bound on the spreads of two specific transform domains. It is shown that only a Gaussian‐type signal minimizes the uncertainty. We also give a Heisenberg‐type uncertainty principle. The other part is a logarithmic uncertainty principle, which may be obtained from a sharp of Pitt's inequality. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9440 |