Local surface cooling from afforestation amplified by lower aerosol pollution
Afforestation can play a key role in local climate mitigation by influencing local temperature through changes in land surface properties. Afforestation impacts depend strongly on the background climate, with contrasting effects observed across geographical locations, seasons and levels of greenhous...
Gespeichert in:
Veröffentlicht in: | Nature geoscience 2023-09, Vol.16 (9), p.781-788 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Afforestation can play a key role in local climate mitigation by influencing local temperature through changes in land surface properties. Afforestation impacts depend strongly on the background climate, with contrasting effects observed across geographical locations, seasons and levels of greenhouse gas-induced warming. Meanwhile, atmospheric aerosols, which are a critical factor influencing regional climate, have varied substantially in recent decades and will continue to change. However, the impacts of aerosol changes on the local effects of afforestation remain unknown. Here, using multiple emissions scenario-based simulations, we show that lower anthropogenic emissions can modulate the local effects of afforestation through modifications in the surface energy balance. If current anthropogenic emissions are reduced to preindustrial levels, afforestation can produce additional cooling effects of up to 0.4 °C. The cooling effects of afforestation are projected to be most strongly affected in China if strict control measures on air pollution are adopted in the future. Our results demonstrate that the enhanced cooling effects of afforestation could partially counteract the warming effect of air quality control, with implications for countries that face the dual challenges of clean air and climate mitigation.
Climate model simulations suggest that reducing aerosol pollution enhances the cooling effects of afforestation, which could partially counteract the warming effect of air quality measures. |
---|---|
ISSN: | 1752-0894 1752-0908 |
DOI: | 10.1038/s41561-023-01251-x |