SemProtector: A Unified Framework for Semantic Protection in Deep Learning-based Semantic Communication Systems

Recently proliferated semantic communications (SC) aim at effectively transmitting the semantics conveyed by the source and accurately interpreting the meaning at the destination. While such a paradigm holds the promise of making wireless communications more intelligent, it also suffers from severe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Liu, Xinghan, Guoshun Nan, Cui, Qimei, Li, Zeju, Liu, Peiyuan, Xing, Zebin, Mu, Hanqing, Tao, Xiaofeng, Quek, Tony Q S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently proliferated semantic communications (SC) aim at effectively transmitting the semantics conveyed by the source and accurately interpreting the meaning at the destination. While such a paradigm holds the promise of making wireless communications more intelligent, it also suffers from severe semantic security issues, such as eavesdropping, privacy leaking, and spoofing, due to the open nature of wireless channels and the fragility of neural modules. Previous works focus more on the robustness of SC via offline adversarial training of the whole system, while online semantic protection, a more practical setting in the real world, is still largely under-explored. To this end, we present SemProtector, a unified framework that aims to secure an online SC system with three hot-pluggable semantic protection modules. Specifically, these protection modules are able to encrypt semantics to be transmitted by an encryption method, mitigate privacy risks from wireless channels by a perturbation mechanism, and calibrate distorted semantics at the destination by a semantic signature generation method. Our framework enables an existing online SC system to dynamically assemble the above three pluggable modules to meet customized semantic protection requirements, facilitating the practical deployment in real-world SC systems. Experiments on two public datasets show the effectiveness of our proposed SemProtector, offering some insights of how we reach the goal of secrecy, privacy and integrity of an SC system. Finally, we discuss some future directions for the semantic protection.
ISSN:2331-8422