Shear flow of non-Brownian rod-sphere mixtures near jamming
We use the discrete element method, taking particle contact and hydrodynamic lubrication into account, to unveil the shear rheology of suspensions of frictionless non-Brownian rods in the dense packing fraction regime. We find that, analogously to the random close packing volume fraction, the shear-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the discrete element method, taking particle contact and hydrodynamic lubrication into account, to unveil the shear rheology of suspensions of frictionless non-Brownian rods in the dense packing fraction regime. We find that, analogously to the random close packing volume fraction, the shear-driven jamming point of this system varies in a non-monotonic fashion as a function of the rod aspect ratio. The latter strongly influences how the addition of rod-like particles affects the rheological response of a suspension of frictionless non-Brownian spheres to an external shear flow. At fixed values of the total (rods plus spheres) packing fraction, the viscosity of the suspension is reduced by the addition of "short" ( \(\leq 2\)) rods but is instead increased by the addition of "long" ( \(\geq2\)) rods. A mechanistic interpretation is provided in terms of packing and excluded-volume arguments. |
---|---|
ISSN: | 2331-8422 |