Semiconductor piezoresistance prediction model for mechanical sensor design
This paper addresses semiconductor piezoresistive materials selection in MEMS engineering design. From the practical engineering point of view, it is important to understand piezoresistance properties of semiconductors even if less accuracy under feasibility design phase. However, piezoresistance is...
Gespeichert in:
Veröffentlicht in: | Electrical engineering in Japan 2023-09, Vol.216 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses semiconductor piezoresistive materials selection in MEMS engineering design. From the practical engineering point of view, it is important to understand piezoresistance properties of semiconductors even if less accuracy under feasibility design phase. However, piezoresistance is frequently analyzed based on first principle electronic band structure simulations by sophisticate physicists. Practical engineers not familiar with this simulation cannot directly apply useful information derived from the result of simulation. This paper provides practical prediction method for piezoresistance based on electronic band parameters obtained from the state‐of‐the‐art solid‐state physics. It is demonstrated that the crucial parameters which control the p‐type shear piezoresistance coefficient π44 in diamond and zinc‐blend single crystals are the inverse of square of bond length in unit cell atom, the square root of valence light hole mass, and the shear elastic compliance coefficient S44. |
---|---|
ISSN: | 0424-7760 1520-6416 |
DOI: | 10.1002/eej.23443 |