ON A BERNSTEIN–SATO POLYNOMIAL OF A MEROMORPHIC FUNCTION

We define Bernstein–Sato polynomials for meromorphic functions and study their basic properties. In particular, we prove a Kashiwara–Malgrange-type theorem on their geometric monodromies, which would also be useful in relation with the monodromy conjecture. A new feature in the meromorphic setting i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2023-09, Vol.251, p.715-733
1. Verfasser: TAKEUCHI, KIYOSHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define Bernstein–Sato polynomials for meromorphic functions and study their basic properties. In particular, we prove a Kashiwara–Malgrange-type theorem on their geometric monodromies, which would also be useful in relation with the monodromy conjecture. A new feature in the meromorphic setting is that we have several b-functions whose roots yield the same set of the eigenvalues of the Milnor monodromies. We also introduce multiplier ideal sheaves for meromorphic functions and show that their jumping numbers are related to our b-functions.
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2023.10