BOHR COMPACTIFICATIONS OF GROUPS AND RINGS

We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2023-09, Vol.88 (3), p.1103-1137
Hauptverfasser: GISMATULLIN, JAKUB, JAGIELLA, GRZEGORZ, KRUPIŃSKI, KRZYSZTOF
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group ${\mathrm {UT}}_3({\mathbb {Z}})$ , the continuous Heisenberg group ${\mathrm {UT}}_3({\mathbb {R}})$ , and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2022.10