BOHR COMPACTIFICATIONS OF GROUPS AND RINGS
We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connec...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2023-09, Vol.88 (3), p.1103-1137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce and study model-theoretic connected components of rings as an analogue of model-theoretic connected components of definable groups. We develop their basic theory and use them to describe both the definable and classical Bohr compactifications of rings. We then use model-theoretic connected components to explicitly calculate Bohr compactifications of some classical matrix groups, such as the discrete Heisenberg group
${\mathrm {UT}}_3({\mathbb {Z}})$
, the continuous Heisenberg group
${\mathrm {UT}}_3({\mathbb {R}})$
, and, more generally, groups of upper unitriangular and invertible upper triangular matrices over unital rings. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2022.10 |