TRANSITIVITY, LOWNESS, AND RANKS IN NSOP $_{1}$ THEORIES
We develop the theory of Kim-independence in the context of NSOP $_{1}$ theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that -Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2023-09, Vol.88 (3), p.919-946 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop the theory of Kim-independence in the context of NSOP
$_{1}$
theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that
-Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low NSOP
$_{1}$
theory, Shelah strong types and Lascar strong types coincide and, additionally, we introduce a notion of rank for NSOP
$_{1}$
theories. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2023.36 |