TRANSITIVITY, LOWNESS, AND RANKS IN NSOP $_{1}$ THEORIES

We develop the theory of Kim-independence in the context of NSOP $_{1}$ theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that -Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2023-09, Vol.88 (3), p.919-946
Hauptverfasser: CHERNIKOV, ARTEM, KIM, BYUNGHAN, RAMSEY, NICHOLAS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop the theory of Kim-independence in the context of NSOP $_{1}$ theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that -Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low NSOP $_{1}$ theory, Shelah strong types and Lascar strong types coincide and, additionally, we introduce a notion of rank for NSOP $_{1}$ theories.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2023.36