The application of hybrid feature based on local mean decomposition for motor imagery electroencephalogram signal classification

This paper proposed a hybrid feature extraction algorithm based on local mean decomposition (LMD), which has better solved the existing problems of low classification performance and adaptability limitation. LMD is employed to decompose the electroencephalogram (EEG) signal into multiple components,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2023-09, Vol.25 (5), p.3305-3317
Hauptverfasser: Li, LinLin, Chen, WanZhong, Li, MingYang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposed a hybrid feature extraction algorithm based on local mean decomposition (LMD), which has better solved the existing problems of low classification performance and adaptability limitation. LMD is employed to decompose the electroencephalogram (EEG) signal into multiple components, and then, the hybrid features based on instantaneous energy, fuzzy entropy, and mathematical morphological features are extracted on specific components, and the optimal feature combination is selected by analysis of variance (ANOVA). Finally, the classification result is output by the linear discriminant analysis (LDA) classifier. The results show that the maximum accuracy of the subjects in Data Set III of BCI‐II by the method in this paper is 92.14%, and the maximum mutual information value is 0.8. The number of novel features used in this paper is small, and the complexity of the algorithm is reduced. It can adaptively select effective features according to individual differences and has good robustness.
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.3089