A characterization of invariant subspaces for isometric representations of product system over \(\mathbb{N}_0^{k}\)
Using the Wold-von Neumann decomposition for the isometric covariant representations due to Muhly and Solel, we prove an explicit representation of the commutant of a doubly commuting pure isometric representation of the product system over \(\mathbb{N}_0^{k}.\) As an application, we study a complet...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the Wold-von Neumann decomposition for the isometric covariant representations due to Muhly and Solel, we prove an explicit representation of the commutant of a doubly commuting pure isometric representation of the product system over \(\mathbb{N}_0^{k}.\) As an application, we study a complete characterization of invariant subspaces for a doubly commuting pure isometric representation of the product system. This provides us a complete set of isomorphic invariants. Finally, we classify a large class of commuting isometric representations of the product system. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2308.16674 |