Current Limit Avoidance Algorithms for DEMO Operation

Tokamaks are the most promising devices to prove the feasibility of energy production using nuclear fusion on Earth which is foreseen as a possible source of energy for the next centuries. In large tokamaks with superconducting poloidal field (PF) coils, the problem of avoiding saturation of the cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2023-09, Vol.198 (3), p.958-987
Hauptverfasser: di Grazia, Luigi Emanuel, Frattolillo, Domenico, De Tommasi, Gianmaria, Mattei, Massimiliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tokamaks are the most promising devices to prove the feasibility of energy production using nuclear fusion on Earth which is foreseen as a possible source of energy for the next centuries. In large tokamaks with superconducting poloidal field (PF) coils, the problem of avoiding saturation of the currents is of paramount importance, especially for a reactor such as the European demonstration fusion power plant DEMO. Indeed, reaching the current limits during plasma operation may cause a loss of control of the plasma shape and/or current, leading to a major disruption. Therefore, a current limit avoidance (CLA) system is essential to assure safe operation. Three different algorithms to be implemented within a CLA system are proposed in this paper: two are based on online solutions of constrained optimization problems, while the third one relies on dynamic allocation. The performance assessment for all the proposed solutions is carried out by considering challenging operation scenarios for the DEMO reactor, such as the case where more than one PF current simultaneously saturates during the discharge. An evaluation of the computational burden needed to solve the allocation problem for the various proposed alternatives is also presented, which shows the compliance of the optimization-based approaches with the envisaged deadlines for real-time implementation of the DEMO plasma magnetic control system.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-023-02277-2