Advances in All Optical Spintronic Memory

The research in spintronics aims to advance the present memory and computation technology by engaging the spin degree of electron. The use of femtosecond optical pulses is relevant, which has shown to trigger the fastest changes in the magnetic state of matter, leading to the possibility of high spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences, India, Section A, physical sciences India, Section A, physical sciences, 2023-09, Vol.93 (3), p.511-516
Hauptverfasser: Banerjee, Chandrima, Barman, Anjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The research in spintronics aims to advance the present memory and computation technology by engaging the spin degree of electron. The use of femtosecond optical pulses is relevant, which has shown to trigger the fastest changes in the magnetic state of matter, leading to the possibility of high speed and energy efficient opto-spintronic memory. In the past decade, the prospects of ultrafast opto-magnetic control in different materials were explored, leading to the discovery of all optical switching of magnetization, which showed promise for applications in technology as well as improved the fundamental understanding of light–spin interaction on ultrashort timescale. In this review, we presented the recent developments, advances and emerging research directions in optical control of magnetization, with an emphasis on the qualitative understanding of the physical processes involved under transient nonequilibrium state. Finally, we outlined the potential of integration of all optical magnetization switching with magnetic random access memory and other memory applications as least-dissipative and fastest method for magnetic writing.
ISSN:0369-8203
2250-1762
DOI:10.1007/s40010-023-00822-2