The cross-interval price impact model and its empirical analysis on cryptocurrency order book

The demand for high-frequency algorithmic trading in the cryptocurrency markets is driving the research of price impact mechanisms. We propose the cross-interval price impact model (CIPIM) to explore the advanced or delayed price impact of order book events. The results of the empirical analysis sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Personal and ubiquitous computing 2023-08, Vol.27 (4), p.1585-1593
Hauptverfasser: Teng, Bin, Wang, Sicong, Ren, Qinghua, Hao, Qi, Shi, Yufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The demand for high-frequency algorithmic trading in the cryptocurrency markets is driving the research of price impact mechanisms. We propose the cross-interval price impact model (CIPIM) to explore the advanced or delayed price impact of order book events. The results of the empirical analysis show that neural network structures such as long short-term memory (LSTM) as a specific implementation of CIPIM obtain better concurrent interpretation on price impact than order flow imbalance (OFI) in Cont et al. ( J Financ Economet 12(1):47–88, 2014 ). Meanwhile, the classification version of CIPIM that predicts the direction of Bitcoin price changes tends to work to some extent.
ISSN:1617-4909
1617-4917
DOI:10.1007/s00779-021-01651-z