Some constructions of factorizations of symmetric group

Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, H. V., Lim, W. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2880
creator Chen, H. V.
Lim, W. C.
description Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group and the alternating group of degree n respectively. We show some constructions of k-fold factorizations of Sn involving Sn−1 and An, where k = 2, 3, . . ., n− 1. In addition, the m-th power of the permutation (1, 2, . . ., n) is studied to form the elements in the factorization subsets, for 2 ≤ m ≤ n− 1.
doi_str_mv 10.1063/5.0166057
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2858466290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858466290</sourcerecordid><originalsourceid>FETCH-LOGICAL-p964-54faf5aa2e7c8aaa2d12b2821ce0cb26376dae5ef386a1905b840e4496ead2353</originalsourceid><addsrcrecordid>eNo9UEtLxDAYDKJgXT34DwrehK5f3slRFl-w4ME9eAtpmkgXu6lJelh_vdVdPM0wDDPDIHSNYYlB0Du-BCwEcHmCKsw5bqTA4hRVAJo1hNH3c3SR8xaAaClVheRbHHzt4i6XNLnSz6SOoQ7WlZj6b_uv5P0w-JJ6V3-kOI2X6CzYz-yvjrhAm8eHzeq5Wb8-vazu182oBWs4CzZwa4mXTtkZO0xaogh2HlxLBJWis577QJWwWANvFQPPmBbedoRyukA3h9gxxa_J52K2cUq7udEQxRUTgmiYXbcHV3Z9-ZtsxtQPNu0NBvP7i-Hm-Av9Aa5aVNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2858466290</pqid></control><display><type>conference_proceeding</type><title>Some constructions of factorizations of symmetric group</title><source>AIP Journals Complete</source><creator>Chen, H. V. ; Lim, W. C.</creator><contributor>Ibrahim, Mohd Lukman Inche ; Daoud, Jamal I.</contributor><creatorcontrib>Chen, H. V. ; Lim, W. C. ; Ibrahim, Mohd Lukman Inche ; Daoud, Jamal I.</creatorcontrib><description>Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group and the alternating group of degree n respectively. We show some constructions of k-fold factorizations of Sn involving Sn−1 and An, where k = 2, 3, . . ., n− 1. In addition, the m-th power of the permutation (1, 2, . . ., n) is studied to form the elements in the factorization subsets, for 2 ≤ m ≤ n− 1.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0166057</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Factorization ; Group theory ; Multiplication ; Permutations</subject><ispartof>AIP conference proceedings, 2023, Vol.2880 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0166057$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76131</link.rule.ids></links><search><contributor>Ibrahim, Mohd Lukman Inche</contributor><contributor>Daoud, Jamal I.</contributor><creatorcontrib>Chen, H. V.</creatorcontrib><creatorcontrib>Lim, W. C.</creatorcontrib><title>Some constructions of factorizations of symmetric group</title><title>AIP conference proceedings</title><description>Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group and the alternating group of degree n respectively. We show some constructions of k-fold factorizations of Sn involving Sn−1 and An, where k = 2, 3, . . ., n− 1. In addition, the m-th power of the permutation (1, 2, . . ., n) is studied to form the elements in the factorization subsets, for 2 ≤ m ≤ n− 1.</description><subject>Factorization</subject><subject>Group theory</subject><subject>Multiplication</subject><subject>Permutations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9UEtLxDAYDKJgXT34DwrehK5f3slRFl-w4ME9eAtpmkgXu6lJelh_vdVdPM0wDDPDIHSNYYlB0Du-BCwEcHmCKsw5bqTA4hRVAJo1hNH3c3SR8xaAaClVheRbHHzt4i6XNLnSz6SOoQ7WlZj6b_uv5P0w-JJ6V3-kOI2X6CzYz-yvjrhAm8eHzeq5Wb8-vazu182oBWs4CzZwa4mXTtkZO0xaogh2HlxLBJWis577QJWwWANvFQPPmBbedoRyukA3h9gxxa_J52K2cUq7udEQxRUTgmiYXbcHV3Z9-ZtsxtQPNu0NBvP7i-Hm-Av9Aa5aVNY</recordid><startdate>20230829</startdate><enddate>20230829</enddate><creator>Chen, H. V.</creator><creator>Lim, W. C.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230829</creationdate><title>Some constructions of factorizations of symmetric group</title><author>Chen, H. V. ; Lim, W. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p964-54faf5aa2e7c8aaa2d12b2821ce0cb26376dae5ef386a1905b840e4496ead2353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Factorization</topic><topic>Group theory</topic><topic>Multiplication</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, H. V.</creatorcontrib><creatorcontrib>Lim, W. C.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, H. V.</au><au>Lim, W. C.</au><au>Ibrahim, Mohd Lukman Inche</au><au>Daoud, Jamal I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Some constructions of factorizations of symmetric group</atitle><btitle>AIP conference proceedings</btitle><date>2023-08-29</date><risdate>2023</risdate><volume>2880</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group and the alternating group of degree n respectively. We show some constructions of k-fold factorizations of Sn involving Sn−1 and An, where k = 2, 3, . . ., n− 1. In addition, the m-th power of the permutation (1, 2, . . ., n) is studied to form the elements in the factorization subsets, for 2 ≤ m ≤ n− 1.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0166057</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2880 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2858466290
source AIP Journals Complete
subjects Factorization
Group theory
Multiplication
Permutations
title Some constructions of factorizations of symmetric group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Some%20constructions%20of%20factorizations%20of%20symmetric%20group&rft.btitle=AIP%20conference%20proceedings&rft.au=Chen,%20H.%20V.&rft.date=2023-08-29&rft.volume=2880&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0166057&rft_dat=%3Cproquest_scita%3E2858466290%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858466290&rft_id=info:pmid/&rfr_iscdi=true