Some constructions of factorizations of symmetric group
Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group an...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let B1, . . ., Bk be the subsets of a finite non-abelian group G such that G = B1 . . . Bk, where k ≥ 2. If |G| = |B1|. . .Bk|, or equivalently, the group multiplication map B1 ×. . .× Bk → G is a bijection, then G = B1 . . . Bk is a k-fold factorization of G. Let Sn and An be the symmetric group and the alternating group of degree n respectively. We show some constructions of k-fold factorizations of Sn involving Sn−1 and An, where k = 2, 3, . . ., n− 1. In addition, the m-th power of the permutation (1, 2, . . ., n) is studied to form the elements in the factorization subsets, for 2 ≤ m ≤ n− 1. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0166057 |