Partial Symmetries of Iterated Plethysms

This work highlights the existence of partial symmetries in large families of iterated plethystic coefficients. The plethystic coefficients involved come from the expansion in the Schur basis of iterated plethysms of Schur functions indexed by one-row partitions.The partial symmetries are described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2023-09, Vol.27 (3), p.493-518
Hauptverfasser: Gutiérrez, Álvaro, Rosas, Mercedes H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work highlights the existence of partial symmetries in large families of iterated plethystic coefficients. The plethystic coefficients involved come from the expansion in the Schur basis of iterated plethysms of Schur functions indexed by one-row partitions.The partial symmetries are described in terms of an involution on partitions, the flip involution, that generalizes the ubiquitous ω involution. Schur-positive symmetric functions possessing this partial symmetry are termed flip-symmetric. The operation of taking plethysm with s λ preserves flip-symmetry, provided that λ is a partition of two. Explicit formulas for the iterated plethysms s 2 ∘ s b ∘ s a and s c ∘ s 2 ∘ s a , with a ,  b ,  and c ≥ 2 allow us to show that these two families of iterated plethysms are flip-symmetric. The article concludes with some observations, remarks, and open questions on the unimodality and asymptotic normality of certain flip-symmetric sequences of iterated plethystic coefficients.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-023-00652-4