Copartitions
We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both ana...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2023-09, Vol.27 (3), p.519-537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 3 |
container_start_page | 519 |
container_title | Annals of combinatorics |
container_volume | 27 |
creator | Burson, Hannah E. Eichhorn, Dennis |
description | We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have. |
doi_str_mv | 10.1007/s00026-022-00607-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858381670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858381670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</originalsourceid><addsrcrecordid>eNp9j0tPwzAQhC1EJUrKH-DK2bC7fuaIIl5SJS70bDmJg1JBEuz0wL_HbZC4cZqRdmd2P8auEW4RwNwlACDNgYgDaDAcz9gaCEsuoJTnJ2_zCPQFu0xpn50BQWu2qcbJx7mf-3FIG7bq_EcKV79asN3jw1v1zLevTy_V_ZY3AsuZo1GtBat02chaCa8Mdm1LRjelQemlClnItxq8RiIlCUytoQm1lJ2WKAp2s_ROcfw6hDS7_XiIQz7pyCorLOr8XcFo2WrimFIMnZti_-njt0NwR2q3ULtM7U7U7lgtllDKy8N7iH_V_6R-AJZlVjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858381670</pqid></control><display><type>article</type><title>Copartitions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Burson, Hannah E. ; Eichhorn, Dennis</creator><creatorcontrib>Burson, Hannah E. ; Eichhorn, Dennis</creatorcontrib><description>We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.</description><identifier>ISSN: 0218-0006</identifier><identifier>EISSN: 0219-3094</identifier><identifier>DOI: 10.1007/s00026-022-00607-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Combinatorial analysis ; Combinatorics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Annals of combinatorics, 2023-09, Vol.27 (3), p.519-537</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</citedby><cites>FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</cites><orcidid>0000-0002-5953-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00026-022-00607-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00026-022-00607-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Burson, Hannah E.</creatorcontrib><creatorcontrib>Eichhorn, Dennis</creatorcontrib><title>Copartitions</title><title>Annals of combinatorics</title><addtitle>Ann. Comb</addtitle><description>We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0218-0006</issn><issn>0219-3094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j0tPwzAQhC1EJUrKH-DK2bC7fuaIIl5SJS70bDmJg1JBEuz0wL_HbZC4cZqRdmd2P8auEW4RwNwlACDNgYgDaDAcz9gaCEsuoJTnJ2_zCPQFu0xpn50BQWu2qcbJx7mf-3FIG7bq_EcKV79asN3jw1v1zLevTy_V_ZY3AsuZo1GtBat02chaCa8Mdm1LRjelQemlClnItxq8RiIlCUytoQm1lJ2WKAp2s_ROcfw6hDS7_XiIQz7pyCorLOr8XcFo2WrimFIMnZti_-njt0NwR2q3ULtM7U7U7lgtllDKy8N7iH_V_6R-AJZlVjM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Burson, Hannah E.</creator><creator>Eichhorn, Dennis</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5953-0933</orcidid></search><sort><creationdate>20230901</creationdate><title>Copartitions</title><author>Burson, Hannah E. ; Eichhorn, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burson, Hannah E.</creatorcontrib><creatorcontrib>Eichhorn, Dennis</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burson, Hannah E.</au><au>Eichhorn, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copartitions</atitle><jtitle>Annals of combinatorics</jtitle><stitle>Ann. Comb</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>27</volume><issue>3</issue><spage>519</spage><epage>537</epage><pages>519-537</pages><issn>0218-0006</issn><eissn>0219-3094</eissn><abstract>We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00026-022-00607-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5953-0933</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0218-0006 |
ispartof | Annals of combinatorics, 2023-09, Vol.27 (3), p.519-537 |
issn | 0218-0006 0219-3094 |
language | eng |
recordid | cdi_proquest_journals_2858381670 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorial analysis Combinatorics Mathematical analysis Mathematics Mathematics and Statistics |
title | Copartitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copartitions&rft.jtitle=Annals%20of%20combinatorics&rft.au=Burson,%20Hannah%20E.&rft.date=2023-09-01&rft.volume=27&rft.issue=3&rft.spage=519&rft.epage=537&rft.pages=519-537&rft.issn=0218-0006&rft.eissn=0219-3094&rft_id=info:doi/10.1007/s00026-022-00607-1&rft_dat=%3Cproquest_cross%3E2858381670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858381670&rft_id=info:pmid/&rfr_iscdi=true |