Copartitions

We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2023-09, Vol.27 (3), p.519-537
Hauptverfasser: Burson, Hannah E., Eichhorn, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 3
container_start_page 519
container_title Annals of combinatorics
container_volume 27
creator Burson, Hannah E.
Eichhorn, Dennis
description We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.
doi_str_mv 10.1007/s00026-022-00607-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2858381670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2858381670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</originalsourceid><addsrcrecordid>eNp9j0tPwzAQhC1EJUrKH-DK2bC7fuaIIl5SJS70bDmJg1JBEuz0wL_HbZC4cZqRdmd2P8auEW4RwNwlACDNgYgDaDAcz9gaCEsuoJTnJ2_zCPQFu0xpn50BQWu2qcbJx7mf-3FIG7bq_EcKV79asN3jw1v1zLevTy_V_ZY3AsuZo1GtBat02chaCa8Mdm1LRjelQemlClnItxq8RiIlCUytoQm1lJ2WKAp2s_ROcfw6hDS7_XiIQz7pyCorLOr8XcFo2WrimFIMnZti_-njt0NwR2q3ULtM7U7U7lgtllDKy8N7iH_V_6R-AJZlVjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858381670</pqid></control><display><type>article</type><title>Copartitions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Burson, Hannah E. ; Eichhorn, Dennis</creator><creatorcontrib>Burson, Hannah E. ; Eichhorn, Dennis</creatorcontrib><description>We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.</description><identifier>ISSN: 0218-0006</identifier><identifier>EISSN: 0219-3094</identifier><identifier>DOI: 10.1007/s00026-022-00607-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Combinatorial analysis ; Combinatorics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Annals of combinatorics, 2023-09, Vol.27 (3), p.519-537</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</citedby><cites>FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</cites><orcidid>0000-0002-5953-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00026-022-00607-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00026-022-00607-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Burson, Hannah E.</creatorcontrib><creatorcontrib>Eichhorn, Dennis</creatorcontrib><title>Copartitions</title><title>Annals of combinatorics</title><addtitle>Ann. Comb</addtitle><description>We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0218-0006</issn><issn>0219-3094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j0tPwzAQhC1EJUrKH-DK2bC7fuaIIl5SJS70bDmJg1JBEuz0wL_HbZC4cZqRdmd2P8auEW4RwNwlACDNgYgDaDAcz9gaCEsuoJTnJ2_zCPQFu0xpn50BQWu2qcbJx7mf-3FIG7bq_EcKV79asN3jw1v1zLevTy_V_ZY3AsuZo1GtBat02chaCa8Mdm1LRjelQemlClnItxq8RiIlCUytoQm1lJ2WKAp2s_ROcfw6hDS7_XiIQz7pyCorLOr8XcFo2WrimFIMnZti_-njt0NwR2q3ULtM7U7U7lgtllDKy8N7iH_V_6R-AJZlVjM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Burson, Hannah E.</creator><creator>Eichhorn, Dennis</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5953-0933</orcidid></search><sort><creationdate>20230901</creationdate><title>Copartitions</title><author>Burson, Hannah E. ; Eichhorn, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-175d808569c4b53a571fdd276c9714a45e7142ad60a612254207b60ceb44f6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burson, Hannah E.</creatorcontrib><creatorcontrib>Eichhorn, Dennis</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burson, Hannah E.</au><au>Eichhorn, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copartitions</atitle><jtitle>Annals of combinatorics</jtitle><stitle>Ann. Comb</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>27</volume><issue>3</issue><spage>519</spage><epage>537</epage><pages>519-537</pages><issn>0218-0006</issn><eissn>0219-3094</eissn><abstract>We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00026-022-00607-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5953-0933</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0218-0006
ispartof Annals of combinatorics, 2023-09, Vol.27 (3), p.519-537
issn 0218-0006
0219-3094
language eng
recordid cdi_proquest_journals_2858381670
source SpringerLink Journals - AutoHoldings
subjects Combinatorial analysis
Combinatorics
Mathematical analysis
Mathematics
Mathematics and Statistics
title Copartitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copartitions&rft.jtitle=Annals%20of%20combinatorics&rft.au=Burson,%20Hannah%20E.&rft.date=2023-09-01&rft.volume=27&rft.issue=3&rft.spage=519&rft.epage=537&rft.pages=519-537&rft.issn=0218-0006&rft.eissn=0219-3094&rft_id=info:doi/10.1007/s00026-022-00607-1&rft_dat=%3Cproquest_cross%3E2858381670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858381670&rft_id=info:pmid/&rfr_iscdi=true