Copartitions

We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2023-09, Vol.27 (3), p.519-537
Hauptverfasser: Burson, Hannah E., Eichhorn, Dennis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop the theory of copartitions, which are a generalization of partitions with connections to many classical topics in partition theory, including Rogers–Ramanujan partitions, theta functions, mock theta functions, partitions with parts separated by parity, and crank statistics. Using both analytic and combinatorial methods, we give two forms of the three-parameter generating function, and we study several special cases that demonstrate the potential broader impact the study of copartitions may have.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-022-00607-1