A Review on Machine-Learning and Nature-Inspired Algorithms for Genome Assembly

Genome assembly plays a crucial role in the field of bioinformatics, as current sequencing technologies are unable to sequence an entire genome at once where the need for fragmenting into short sequences and reassembling them. The genomes often contain repetitive sequences and duplicated regions, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2023, Vol.14 (7)
Hauptverfasser: Yassine, Asmae, Riffi, Mohammed Essaid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genome assembly plays a crucial role in the field of bioinformatics, as current sequencing technologies are unable to sequence an entire genome at once where the need for fragmenting into short sequences and reassembling them. The genomes often contain repetitive sequences and duplicated regions, which can lead to ambiguities during assembly. Thus, the process of reconstructing a complete genome from a set of reads necessitates the use of efficient assembly programs. Over time, as genome sequencing technology has advanced, the methods for genome assembly have also evolved, resulting in the utilization of various genome assemblers. Many artificial intelligence techniques such as machine learning and nature-inspired algorithms have been applied in genome assembly in recent years. These technologies have the potential to significantly enhance the accuracy of genome assembly, leading to functionally correct genome reconstructions. This review paper aims to provide an overview of the genome assembly, highlighting the significance of different methods used in machine learning techniques and nature-inspiring algorithms in achieving accurate and efficient genome assembly. By examining the advancements and possibilities brought about by different machine learning and metaheuristics approaches, this review paper offers insights into the future directions of genome assembly.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2023.0140798