Approximation of Dirac operators with \(\boldsymbol{\delta}\)-shell potentials in the norm resolvent sense

In this paper the approximation of Dirac operators with general \(\delta\)-shell potentials supported on \(C^2\)-curves in \(\mathbb{R}^2\) or \(C^2\)-surfaces in \(\mathbb{R}^3\), which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the \(\delta\)-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Behrndt, Jussi, Holzmann, Markus, Stelzer, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper the approximation of Dirac operators with general \(\delta\)-shell potentials supported on \(C^2\)-curves in \(\mathbb{R}^2\) or \(C^2\)-surfaces in \(\mathbb{R}^3\), which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the \(\delta\)-interaction that a family of Dirac operators with regular, squeezed potentials converges in the norm resolvent sense to the Dirac operator with the \(\delta\)-shell interaction.
ISSN:2331-8422