Dynamic visual simultaneous localization and mapping based on semantic segmentation module
Simultaneous localization and mapping (SLAM) is a key technique for mobile robotics. Moving objects can vastly impair the performance of a visual SLAM system. To deal with the problem, a new semantic visual SLAM system for indoor environments is proposed. Our system adds a semantic segmentation netw...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-08, Vol.53 (16), p.19418-19432 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simultaneous localization and mapping (SLAM) is a key technique for mobile robotics. Moving objects can vastly impair the performance of a visual SLAM system. To deal with the problem, a new semantic visual SLAM system for indoor environments is proposed. Our system adds a semantic segmentation network and geometric model to detect and remove dynamic feature points on moving objects. Moreover, a 3D point cloud map with semantic information is created using semantic labels and depth images. We evaluate our method on the TUM RGB-D dataset and real-world environments. The evaluation metrics used are absolute trajectory error and relative position error. Experimental results show our method improves the accuracy in dynamic scenes compared to ORB-SLAM3 and other advanced methods. |
---|---|
ISSN: | 0924-669X 1573-7497 |
DOI: | 10.1007/s10489-023-04531-6 |