Dynamic visual simultaneous localization and mapping based on semantic segmentation module

Simultaneous localization and mapping (SLAM) is a key technique for mobile robotics. Moving objects can vastly impair the performance of a visual SLAM system. To deal with the problem, a new semantic visual SLAM system for indoor environments is proposed. Our system adds a semantic segmentation netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-08, Vol.53 (16), p.19418-19432
Hauptverfasser: Jin, Jing, Jiang, Xufeng, Yu, Chenhui, Zhao, Lingna, Tang, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Simultaneous localization and mapping (SLAM) is a key technique for mobile robotics. Moving objects can vastly impair the performance of a visual SLAM system. To deal with the problem, a new semantic visual SLAM system for indoor environments is proposed. Our system adds a semantic segmentation network and geometric model to detect and remove dynamic feature points on moving objects. Moreover, a 3D point cloud map with semantic information is created using semantic labels and depth images. We evaluate our method on the TUM RGB-D dataset and real-world environments. The evaluation metrics used are absolute trajectory error and relative position error. Experimental results show our method improves the accuracy in dynamic scenes compared to ORB-SLAM3 and other advanced methods.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-023-04531-6