Calibration of Sensor Network for Outdoor Measurement of PM2.5 on High Wood-Heating Smoke in Temuco City

In order to ascertain the spatial and temporal changes in the air quality in Temuco City, Chile, we created and installed a network of inexpensive sensors to detect PM2.5 particulate matter. The 21 measurement points deployed were based on a low-cost Sensiron SPS30 sensor, complemented with temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-08, Vol.11 (8), p.2338
Hauptverfasser: Muñoz, Carlos, Huircan, Juan, Jaramillo, Francisco, Boso, Álex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to ascertain the spatial and temporal changes in the air quality in Temuco City, Chile, we created and installed a network of inexpensive sensors to detect PM2.5 particulate matter. The 21 measurement points deployed were based on a low-cost Sensiron SPS30 sensor, complemented with temperature and humidity sensors, an Esp32 microcontroller card with LoRa and WiFi wireless communication interface, and a solar charging unit. The units were calibrated using an airtight combustion chamber with a Grimm 11-E as a reference unit. The calibration procedure fits the parameters of a calibration model to map the raw low-cost particle-material measurements into reliable calibrated values. The measurements showed that the concentrations of fine particulate material recorded in Temuco present a high temporal and spatial variability. In critical contamination episodes, pollution reaches values as high as 354 µg/m3, and at the same time, it reaches 50 µg/m3 in other parts of the city. The contamination episodes show a similar trend around the city, and the peaks are in the time interval from 07:00 PM to 1:00 AM. In the winter, this time of day coincides with when families are usually home and there are low temperatures outside.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11082338