Study on Enhanced Heat Transfer of the Convex Columns in the Cooling Channel of Motorized Spindle Based on Field Synergy

The cooling performance of motorized spindles plays an important role in accuracy in high-speed machining. Aiming at improving the cooling performance of traditional motorized spindles, convex columns were built in the cooling channel. Based on field synergy, the effects of quadrilateral, circular a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-08, Vol.11 (8), p.2431
Hauptverfasser: Li, Yang, Nie, Zhe, Su, Dongxu, Tian, Jingyao, He, Wenlei, Zhao, Wanhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cooling performance of motorized spindles plays an important role in accuracy in high-speed machining. Aiming at improving the cooling performance of traditional motorized spindles, convex columns were built in the cooling channel. Based on field synergy, the effects of quadrilateral, circular and triangular convex columns on the heat transfer performance of the cooling channel were analyzed numerically. We also compared the pressure drop between the inlet and outlet under the same conditions. The results show that the cooling channels with triangular convex columns provide the best cooling effect with the smallest increase in area compared to quadrilateral convex columns and circular convex columns. The pressure drop in the cooling channels with a circular convex column is minimized. By optimizing the spacing of the convex column, the best effect was found at a spacing of 7 mm. By optimizing the angle of the top angle of the triangular column, it is found that the enhanced heat transfer effect is best at 120° when the heat transfer area is the same. In addition, when considering the addition of convex columns, it is important to ensure sufficient pressure drop to achieve a good cooling effect.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr11082431