A New Intelligent Recognition Method for Maneuver Modes of Re-entry Gliding Vehicle

Aiming at the problem of maneuver mode recognition for re-entry gliding vehicles (RGV), this article proposes a new intelligent method for maneuver mode recognition of re-entry gliding vehicles. Based on the extracted feature parameters that fit the maneuver characteristics of the vehicle trajectory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-08, Vol.2569 (1), p.12060
Hauptverfasser: He, Yang Chao, Wang, Ya Jun, Li, Jiong, Li, Ming Jie, Li, Wan Li, Zhang, Jin Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the problem of maneuver mode recognition for re-entry gliding vehicles (RGV), this article proposes a new intelligent method for maneuver mode recognition of re-entry gliding vehicles. Based on the extracted feature parameters that fit the maneuver characteristics of the vehicle trajectory and the constructed RGV maneuver modes trajectory library, an LSTM deep learning neural network was built to train the extracted new feature parameters. Compared with other typical feature parameters in network training, the results show that our proposed feature parameters converge faster and more stably in LSTM maneuver mode recognition network training, and achieve high recognition accuracy.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/2569/1/012060