Four-component integrable hierarchies of Hamiltonian equations with ()th-order Lax pairs
A class of higher-order matrix spectral problems is formulated and the associated integrable hierarchies are generated via the zero-curvature formulation. The trace identity is used to furnish Hamiltonian structures and thus explore the Liouville integrability of the obtained hierarchies. Illuminati...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2023-08, Vol.216 (2), p.1180-1188 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A class of higher-order matrix spectral problems is formulated and the associated integrable hierarchies are generated via the zero-curvature formulation. The trace identity is used to furnish Hamiltonian structures and thus explore the Liouville integrability of the obtained hierarchies. Illuminating examples are given in terms of coupled nonlinear Schrödinger equations and coupled modified Korteweg–de Vries equations with four components. |
---|---|
ISSN: | 0040-5779 1573-9333 |
DOI: | 10.1134/S0040577923080093 |