Four-component integrable hierarchies of Hamiltonian equations with ()th-order Lax pairs

A class of higher-order matrix spectral problems is formulated and the associated integrable hierarchies are generated via the zero-curvature formulation. The trace identity is used to furnish Hamiltonian structures and thus explore the Liouville integrability of the obtained hierarchies. Illuminati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2023-08, Vol.216 (2), p.1180-1188
1. Verfasser: Ma, Wen-Xiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of higher-order matrix spectral problems is formulated and the associated integrable hierarchies are generated via the zero-curvature formulation. The trace identity is used to furnish Hamiltonian structures and thus explore the Liouville integrability of the obtained hierarchies. Illuminating examples are given in terms of coupled nonlinear Schrödinger equations and coupled modified Korteweg–de Vries equations with four components.
ISSN:0040-5779
1573-9333
DOI:10.1134/S0040577923080093