Synthesis of Quaternary Hydrotalcite-Carbon Nanotube Composite and Its Sulfate Adsorption Performance in Cement Paste
AbstractIn this paper, quaternary hydrotalcite [layered double hydroxide (LDH)] (CoFeMgAl-LDH) was first fabricated based on the coprecipitation method, and then, CoFeMgAl-LDH/carbon nanotubes (CNTs) composite was synthesized by CNTs and CoFeMgAl-LDH through the solid phase mixing method. Subsequent...
Gespeichert in:
Veröffentlicht in: | Journal of materials in civil engineering 2023-11, Vol.35 (11) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AbstractIn this paper, quaternary hydrotalcite [layered double hydroxide (LDH)] (CoFeMgAl-LDH) was first fabricated based on the coprecipitation method, and then, CoFeMgAl-LDH/carbon nanotubes (CNTs) composite was synthesized by CNTs and CoFeMgAl-LDH through the solid phase mixing method. Subsequently, the physical-chemical properties of CoFeMgAl-LDH/CNT composite were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, energy dispersive spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) analysis. Meanwhile, the performance of CoFeMgAl-LDH/CNT composite for SO42− adsorption was evaluated under different conditions, including different initial concentration, contact time, adsorbent dosage, solution pH, temperature, and coexisting ions. Afterward, the SO42− adsorption capacity of CoFeMgAl-LDH/CNT in cement paste was further studied. The results showed that the CoFeMgAl-LDH/CNT composite exhibited a three-dimensional structure with high specific surface area. The maximum SO42− adsorption amount of the CoFeMgAl-LDH/CNT composite was 116.27 mg/g, which was significantly higher compared with other absorbents of the same type. Pseudosecond-order kinetic model could reasonably describe the adsorption kinetics, and Freundlich isotherm could fit the adsorption data accurately. The results also suggest that the synthesized CoFeMgAl-LDH/CNT composite can serve as a potential material for the sulfate binding in cementitious materials. |
---|---|
ISSN: | 0899-1561 1943-5533 |
DOI: | 10.1061/JMCEE7.MTENG-15248 |