Deep Learning Model Performance and Optimal Model Study for Hourly Fine Power Consumption Prediction

Electricity consumption has been increasing steadily owing to technological developments since the Industrial Revolution. Technologies that can predict power usage and management for improved efficiency are thus emerging. Detailed energy management requires precise power consumption forecasting. Dee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-08, Vol.12 (16), p.3528
Hauptverfasser: Oh, Seungmin, Oh, Sangwon, Shin, Hyeju, Um, Tai-won, Kim, Jinsul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electricity consumption has been increasing steadily owing to technological developments since the Industrial Revolution. Technologies that can predict power usage and management for improved efficiency are thus emerging. Detailed energy management requires precise power consumption forecasting. Deep learning technologies have been widely used recently to achieve high performance. Many deep learning technologies are focused on accuracy, but they do not involve detailed time-based usage prediction research. In addition, detailed power prediction models should consider computing power, such as that of end Internet of Things devices and end home AMIs. In this work, we conducted experiments to predict hourly demands for the temporal neural network (TCN) and transformer models, as well as artificial neural network, long short-term memory (LSTM), and gated recurrent unit models. The study covered detailed time intervals from 1 to 24 h with 1 h increments. The experimental results were analyzed, and the optimal models for different time intervals and datasets were derived. The LSTM model showed superior performance for datasets with characteristics similar to those of schools, while the TCN model performed better for average or industrial power consumption datasets.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12163528