Semiparametric Modeling and Analysis for Longitudinal Network Data

We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: He, Yinqiu, Sun, Jiajin, Tian, Yuang, Ying, Zhiliang, Yang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator He, Yinqiu
Sun, Jiajin
Tian, Yuang
Ying, Zhiliang
Yang, Feng
description We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for the baseline nuisance component. Estimation is accomplished through a one-step update estimator and an appropriately penalized maximum likelihood estimator. We derive oracle error bounds for the two estimators and address identifiability concerns from a quotient manifold perspective. Our approach is demonstrated using the New York Citi Bike Dataset.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2856632099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856632099</sourcerecordid><originalsourceid>FETCH-proquest_journals_28566320993</originalsourceid><addsrcrecordid>eNqNi8sKgkAUQIcgSMp_GGgtTHfSdNmTFtXG9nLJUcZ0xuaORH-fiz6g1YHDORMWgJSrKF0DzFhI1AghINlAHMuA7XLV6R4ddso7_eBXW6pWm5qjKfnWYPshTbyyjl-sqbUfSj1KflP-bd2TH9Djgk0rbEmFP87Z8nS8789R7-xrUOSLxg5uvKiANE4SCSLL5H_VF9JPOfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856632099</pqid></control><display><type>article</type><title>Semiparametric Modeling and Analysis for Longitudinal Network Data</title><source>Free E- Journals</source><creator>He, Yinqiu ; Sun, Jiajin ; Tian, Yuang ; Ying, Zhiliang ; Yang, Feng</creator><creatorcontrib>He, Yinqiu ; Sun, Jiajin ; Tian, Yuang ; Ying, Zhiliang ; Yang, Feng</creatorcontrib><description>We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for the baseline nuisance component. Estimation is accomplished through a one-step update estimator and an appropriately penalized maximum likelihood estimator. We derive oracle error bounds for the two estimators and address identifiability concerns from a quotient manifold perspective. Our approach is demonstrated using the New York Citi Bike Dataset.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Maximum likelihood estimators</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Sun, Jiajin</creatorcontrib><creatorcontrib>Tian, Yuang</creatorcontrib><creatorcontrib>Ying, Zhiliang</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><title>Semiparametric Modeling and Analysis for Longitudinal Network Data</title><title>arXiv.org</title><description>We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for the baseline nuisance component. Estimation is accomplished through a one-step update estimator and an appropriately penalized maximum likelihood estimator. We derive oracle error bounds for the two estimators and address identifiability concerns from a quotient manifold perspective. Our approach is demonstrated using the New York Citi Bike Dataset.</description><subject>Maximum likelihood estimators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKgkAUQIcgSMp_GGgtTHfSdNmTFtXG9nLJUcZ0xuaORH-fiz6g1YHDORMWgJSrKF0DzFhI1AghINlAHMuA7XLV6R4ddso7_eBXW6pWm5qjKfnWYPshTbyyjl-sqbUfSj1KflP-bd2TH9Djgk0rbEmFP87Z8nS8789R7-xrUOSLxg5uvKiANE4SCSLL5H_VF9JPOfw</recordid><startdate>20240709</startdate><enddate>20240709</enddate><creator>He, Yinqiu</creator><creator>Sun, Jiajin</creator><creator>Tian, Yuang</creator><creator>Ying, Zhiliang</creator><creator>Yang, Feng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240709</creationdate><title>Semiparametric Modeling and Analysis for Longitudinal Network Data</title><author>He, Yinqiu ; Sun, Jiajin ; Tian, Yuang ; Ying, Zhiliang ; Yang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28566320993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Maximum likelihood estimators</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Yinqiu</creatorcontrib><creatorcontrib>Sun, Jiajin</creatorcontrib><creatorcontrib>Tian, Yuang</creatorcontrib><creatorcontrib>Ying, Zhiliang</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yinqiu</au><au>Sun, Jiajin</au><au>Tian, Yuang</au><au>Ying, Zhiliang</au><au>Yang, Feng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semiparametric Modeling and Analysis for Longitudinal Network Data</atitle><jtitle>arXiv.org</jtitle><date>2024-07-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for the baseline nuisance component. Estimation is accomplished through a one-step update estimator and an appropriately penalized maximum likelihood estimator. We derive oracle error bounds for the two estimators and address identifiability concerns from a quotient manifold perspective. Our approach is demonstrated using the New York Citi Bike Dataset.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2856632099
source Free E- Journals
subjects Maximum likelihood estimators
title Semiparametric Modeling and Analysis for Longitudinal Network Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semiparametric%20Modeling%20and%20Analysis%20for%20Longitudinal%20Network%20Data&rft.jtitle=arXiv.org&rft.au=He,%20Yinqiu&rft.date=2024-07-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2856632099%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856632099&rft_id=info:pmid/&rfr_iscdi=true