Semiparametric Modeling and Analysis for Longitudinal Network Data
We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a semiparametric latent space model for analyzing longitudinal network data. The model consists of a static latent space component and a time-varying node-specific baseline component. We develop a semiparametric efficient score equation for the latent space parameter by adjusting for the baseline nuisance component. Estimation is accomplished through a one-step update estimator and an appropriately penalized maximum likelihood estimator. We derive oracle error bounds for the two estimators and address identifiability concerns from a quotient manifold perspective. Our approach is demonstrated using the New York Citi Bike Dataset. |
---|---|
ISSN: | 2331-8422 |