The faithfulness of an extension of Lawrence-Krammer representation on the group of conjugating automorphisms \(C_n\) in the cases \(n=3\) and \(n=4\)

Let \(C_n\) be the group of conjugating automorphisms. Valerij G. Bardakov defined a representation \(\rho\) of \(C_n\), which is an extension of Lawrence-Krammer representation of the braid group \(B_n\). Bardakov proved that the representation \(\rho\) is unfaithful for \(n \geq 5\). The cases \(n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
1. Verfasser: Nasser, Mohamad N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(C_n\) be the group of conjugating automorphisms. Valerij G. Bardakov defined a representation \(\rho\) of \(C_n\), which is an extension of Lawrence-Krammer representation of the braid group \(B_n\). Bardakov proved that the representation \(\rho\) is unfaithful for \(n \geq 5\). The cases \(n=3,4\) remain open. M. N. Nasser and M. N. Abdulrahim made attempts towards the faithfulness of \(\rho\) in the case \(n=3\). In this work, we prove that \(\rho\) is unfaithful in the both cases \(n=3\) and \(n=4\).
ISSN:2331-8422