The faithfulness of an extension of Lawrence-Krammer representation on the group of conjugating automorphisms \(C_n\) in the cases \(n=3\) and \(n=4\)
Let \(C_n\) be the group of conjugating automorphisms. Valerij G. Bardakov defined a representation \(\rho\) of \(C_n\), which is an extension of Lawrence-Krammer representation of the braid group \(B_n\). Bardakov proved that the representation \(\rho\) is unfaithful for \(n \geq 5\). The cases \(n...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(C_n\) be the group of conjugating automorphisms. Valerij G. Bardakov defined a representation \(\rho\) of \(C_n\), which is an extension of Lawrence-Krammer representation of the braid group \(B_n\). Bardakov proved that the representation \(\rho\) is unfaithful for \(n \geq 5\). The cases \(n=3,4\) remain open. M. N. Nasser and M. N. Abdulrahim made attempts towards the faithfulness of \(\rho\) in the case \(n=3\). In this work, we prove that \(\rho\) is unfaithful in the both cases \(n=3\) and \(n=4\). |
---|---|
ISSN: | 2331-8422 |