Growth in Sumsets of Higher Convex Functions
The main results of this paper concern growth in sums of a k -convex function f . Firstly, we streamline the proof (from Hanson et al. (Combinatorica 42:71–85, 2020)) of a growth result for f ( A ) where A has small additive doubling, and improve the bound by removing logarithmic factors. The result...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2023-08, Vol.43 (4), p.769-789 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main results of this paper concern growth in sums of a
k
-convex function
f
. Firstly, we streamline the proof (from Hanson et al. (Combinatorica 42:71–85, 2020)) of a growth result for
f
(
A
) where
A
has small additive doubling, and improve the bound by removing logarithmic factors. The result yields an optimal bound for
|
2
k
f
(
A
)
-
(
2
k
-
1
)
f
(
A
)
|
.
We also generalise a recent result from Hanson et al. (J Lond Math Soc, 2021), proving that for any finite
A
⊂
R
|
2
k
f
(
s
A
-
s
A
)
-
(
2
k
-
1
)
f
(
s
A
-
s
A
)
|
≫
s
|
A
|
2
s
where
s
=
k
+
1
2
. This allows us to prove that, given any natural number
s
∈
N
, there exists
m
=
m
(
s
)
such that if
A
⊂
R
, then
1
|
(
s
A
-
s
A
)
(
m
)
|
≫
s
|
A
|
s
.
This is progress towards a conjecture (Balog et al. in Electron J Comb 24(3):Paper No. 3.14, 17, 2017) which states that (1) can be replaced with
|
(
A
-
A
)
(
m
)
|
≫
s
|
A
|
s
.
Developing methods of Solymosi, and Bloom and Jones, and using an idea from Bradshaw et al. (Electron J Comb 29, 2021), we present some new sum-product type results in the complex numbers
C
and in the function field
F
q
(
(
t
-
1
)
)
. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-023-00035-6 |