Effect of gamma-ray irradiation on structural and optical property of WSe2 film

In the present work, RF sputtering synthesis method is used for the synthesis of tungsten diselenide (WSe 2 ) films. These WSe 2 films were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Visible spectroscopy techniques. Further, Co-60 gamma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-08, Vol.34 (24), p.1704, Article 1704
Hauptverfasser: Kolhe, P. T., Dalvi, S. N., Hase, Y. V., Jadhav, P. R., Ghemud, V. S., Jadkar, S. R., Dhole, S. D., Dahiwale, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 1704
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Kolhe, P. T.
Dalvi, S. N.
Hase, Y. V.
Jadhav, P. R.
Ghemud, V. S.
Jadkar, S. R.
Dhole, S. D.
Dahiwale, S. S.
description In the present work, RF sputtering synthesis method is used for the synthesis of tungsten diselenide (WSe 2 ) films. These WSe 2 films were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Visible spectroscopy techniques. Further, Co-60 gamma rays of 1 kGy, 10 kGy, and 100 kGy doses were irradiated on these films. The structural characterization techniques XRD and Raman spectra show that with increase in gamma dose of WSe 2 film increases the strain  ε  produced in the material. For validation of oxygen occupying the selenium vacancy in WSe 2 thin film is confirmed through X-ray photoelectron spectroscopy (XPS) spectra. The optical band gap is also seen to decrease from 1.60 to 1.14 eV with the increasing gamma dose from 1 to 100 kGy, and can be attributed to the defect induced in the WSe 2 sample. The I–V curve also shows a significant linear increase in current of gamma-irradiated WSe 2 thin films. These changes induced in the structural, optical and electrical properties of the WSe 2 thin films due to gamma irradiation have proved possible applications of these samples in optoelectronics, space, and defense system.
doi_str_mv 10.1007/s10854-023-11088-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2856154750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856154750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1e6b97327ca1e2152d29a7461a4f315bba0503843a037cddf8327f4967d46cf03</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNa5JZSqkPELpQ0V1IM0mZ0nmYZBb992YcwZ1w4Z7Fd869HISuCdwSAHkXCSjBMVCGSZYKwwlaECEZ5op-nqIFVEJiLig9Rxcx7gGg5Ewt0GbtvbOp6H2xM21rcDDHognB1I1JTd8VeWIKo01jMIfCdHXRD6mxWQ-hH1xIx8n78epo4ZtDe4nOvDlEd_W7l-j9Yf22esIvm8fn1f0LtoxUCRNXbivJqLSGOEoErWllJC-J4Z4Rsd0aEMAUZwaYtHXtVWY9r0pZ89J6YEt0M-fmL75GF5Pe92Po8klNlSiJ4FJMFJ0pG_oYg_N6CE1rwlET0FNxei5O5-L0T3F6MrHZFDPc7Vz4i_7H9Q3Qu2-c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2856154750</pqid></control><display><type>article</type><title>Effect of gamma-ray irradiation on structural and optical property of WSe2 film</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kolhe, P. T. ; Dalvi, S. N. ; Hase, Y. V. ; Jadhav, P. R. ; Ghemud, V. S. ; Jadkar, S. R. ; Dhole, S. D. ; Dahiwale, S. S.</creator><creatorcontrib>Kolhe, P. T. ; Dalvi, S. N. ; Hase, Y. V. ; Jadhav, P. R. ; Ghemud, V. S. ; Jadkar, S. R. ; Dhole, S. D. ; Dahiwale, S. S.</creatorcontrib><description>In the present work, RF sputtering synthesis method is used for the synthesis of tungsten diselenide (WSe 2 ) films. These WSe 2 films were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Visible spectroscopy techniques. Further, Co-60 gamma rays of 1 kGy, 10 kGy, and 100 kGy doses were irradiated on these films. The structural characterization techniques XRD and Raman spectra show that with increase in gamma dose of WSe 2 film increases the strain  ε  produced in the material. For validation of oxygen occupying the selenium vacancy in WSe 2 thin film is confirmed through X-ray photoelectron spectroscopy (XPS) spectra. The optical band gap is also seen to decrease from 1.60 to 1.14 eV with the increasing gamma dose from 1 to 100 kGy, and can be attributed to the defect induced in the WSe 2 sample. The I–V curve also shows a significant linear increase in current of gamma-irradiated WSe 2 thin films. These changes induced in the structural, optical and electrical properties of the WSe 2 thin films due to gamma irradiation have proved possible applications of these samples in optoelectronics, space, and defense system.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11088-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electrical properties ; Gamma irradiation ; Gamma rays ; Materials Science ; Optical and Electronic Materials ; Optical properties ; Optoelectronics ; Photoelectrons ; Raman spectra ; Raman spectroscopy ; Selenides ; Selenium ; Spectrum analysis ; Structural analysis ; Synthesis ; Thin films ; Tungsten compounds ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2023-08, Vol.34 (24), p.1704, Article 1704</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1e6b97327ca1e2152d29a7461a4f315bba0503843a037cddf8327f4967d46cf03</citedby><cites>FETCH-LOGICAL-c319t-1e6b97327ca1e2152d29a7461a4f315bba0503843a037cddf8327f4967d46cf03</cites><orcidid>0000-0003-4060-3984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-11088-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-11088-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kolhe, P. T.</creatorcontrib><creatorcontrib>Dalvi, S. N.</creatorcontrib><creatorcontrib>Hase, Y. V.</creatorcontrib><creatorcontrib>Jadhav, P. R.</creatorcontrib><creatorcontrib>Ghemud, V. S.</creatorcontrib><creatorcontrib>Jadkar, S. R.</creatorcontrib><creatorcontrib>Dhole, S. D.</creatorcontrib><creatorcontrib>Dahiwale, S. S.</creatorcontrib><title>Effect of gamma-ray irradiation on structural and optical property of WSe2 film</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In the present work, RF sputtering synthesis method is used for the synthesis of tungsten diselenide (WSe 2 ) films. These WSe 2 films were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Visible spectroscopy techniques. Further, Co-60 gamma rays of 1 kGy, 10 kGy, and 100 kGy doses were irradiated on these films. The structural characterization techniques XRD and Raman spectra show that with increase in gamma dose of WSe 2 film increases the strain  ε  produced in the material. For validation of oxygen occupying the selenium vacancy in WSe 2 thin film is confirmed through X-ray photoelectron spectroscopy (XPS) spectra. The optical band gap is also seen to decrease from 1.60 to 1.14 eV with the increasing gamma dose from 1 to 100 kGy, and can be attributed to the defect induced in the WSe 2 sample. The I–V curve also shows a significant linear increase in current of gamma-irradiated WSe 2 thin films. These changes induced in the structural, optical and electrical properties of the WSe 2 thin films due to gamma irradiation have proved possible applications of these samples in optoelectronics, space, and defense system.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical properties</subject><subject>Gamma irradiation</subject><subject>Gamma rays</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Photoelectrons</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Selenides</subject><subject>Selenium</subject><subject>Spectrum analysis</subject><subject>Structural analysis</subject><subject>Synthesis</subject><subject>Thin films</subject><subject>Tungsten compounds</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNa5JZSqkPELpQ0V1IM0mZ0nmYZBb992YcwZ1w4Z7Fd869HISuCdwSAHkXCSjBMVCGSZYKwwlaECEZ5op-nqIFVEJiLig9Rxcx7gGg5Ewt0GbtvbOp6H2xM21rcDDHognB1I1JTd8VeWIKo01jMIfCdHXRD6mxWQ-hH1xIx8n78epo4ZtDe4nOvDlEd_W7l-j9Yf22esIvm8fn1f0LtoxUCRNXbivJqLSGOEoErWllJC-J4Z4Rsd0aEMAUZwaYtHXtVWY9r0pZ89J6YEt0M-fmL75GF5Pe92Po8klNlSiJ4FJMFJ0pG_oYg_N6CE1rwlET0FNxei5O5-L0T3F6MrHZFDPc7Vz4i_7H9Q3Qu2-c</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kolhe, P. T.</creator><creator>Dalvi, S. N.</creator><creator>Hase, Y. V.</creator><creator>Jadhav, P. R.</creator><creator>Ghemud, V. S.</creator><creator>Jadkar, S. R.</creator><creator>Dhole, S. D.</creator><creator>Dahiwale, S. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-4060-3984</orcidid></search><sort><creationdate>20230801</creationdate><title>Effect of gamma-ray irradiation on structural and optical property of WSe2 film</title><author>Kolhe, P. T. ; Dalvi, S. N. ; Hase, Y. V. ; Jadhav, P. R. ; Ghemud, V. S. ; Jadkar, S. R. ; Dhole, S. D. ; Dahiwale, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1e6b97327ca1e2152d29a7461a4f315bba0503843a037cddf8327f4967d46cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical properties</topic><topic>Gamma irradiation</topic><topic>Gamma rays</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Photoelectrons</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Selenides</topic><topic>Selenium</topic><topic>Spectrum analysis</topic><topic>Structural analysis</topic><topic>Synthesis</topic><topic>Thin films</topic><topic>Tungsten compounds</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolhe, P. T.</creatorcontrib><creatorcontrib>Dalvi, S. N.</creatorcontrib><creatorcontrib>Hase, Y. V.</creatorcontrib><creatorcontrib>Jadhav, P. R.</creatorcontrib><creatorcontrib>Ghemud, V. S.</creatorcontrib><creatorcontrib>Jadkar, S. R.</creatorcontrib><creatorcontrib>Dhole, S. D.</creatorcontrib><creatorcontrib>Dahiwale, S. S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolhe, P. T.</au><au>Dalvi, S. N.</au><au>Hase, Y. V.</au><au>Jadhav, P. R.</au><au>Ghemud, V. S.</au><au>Jadkar, S. R.</au><au>Dhole, S. D.</au><au>Dahiwale, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of gamma-ray irradiation on structural and optical property of WSe2 film</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>24</issue><spage>1704</spage><pages>1704-</pages><artnum>1704</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In the present work, RF sputtering synthesis method is used for the synthesis of tungsten diselenide (WSe 2 ) films. These WSe 2 films were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and UV–Visible spectroscopy techniques. Further, Co-60 gamma rays of 1 kGy, 10 kGy, and 100 kGy doses were irradiated on these films. The structural characterization techniques XRD and Raman spectra show that with increase in gamma dose of WSe 2 film increases the strain  ε  produced in the material. For validation of oxygen occupying the selenium vacancy in WSe 2 thin film is confirmed through X-ray photoelectron spectroscopy (XPS) spectra. The optical band gap is also seen to decrease from 1.60 to 1.14 eV with the increasing gamma dose from 1 to 100 kGy, and can be attributed to the defect induced in the WSe 2 sample. The I–V curve also shows a significant linear increase in current of gamma-irradiated WSe 2 thin films. These changes induced in the structural, optical and electrical properties of the WSe 2 thin films due to gamma irradiation have proved possible applications of these samples in optoelectronics, space, and defense system.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11088-0</doi><orcidid>https://orcid.org/0000-0003-4060-3984</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-08, Vol.34 (24), p.1704, Article 1704
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2856154750
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electrical properties
Gamma irradiation
Gamma rays
Materials Science
Optical and Electronic Materials
Optical properties
Optoelectronics
Photoelectrons
Raman spectra
Raman spectroscopy
Selenides
Selenium
Spectrum analysis
Structural analysis
Synthesis
Thin films
Tungsten compounds
X ray photoelectron spectroscopy
X-ray diffraction
title Effect of gamma-ray irradiation on structural and optical property of WSe2 film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20gamma-ray%20irradiation%20on%20structural%20and%20optical%20property%20of%20WSe2%20film&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Kolhe,%20P.%20T.&rft.date=2023-08-01&rft.volume=34&rft.issue=24&rft.spage=1704&rft.pages=1704-&rft.artnum=1704&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11088-0&rft_dat=%3Cproquest_cross%3E2856154750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2856154750&rft_id=info:pmid/&rfr_iscdi=true