The pseudospectra of linear operator pencils in a Hilbert space

The purpose of this paper is to introduce and study some basic proprieties of the pseudospectra of linear operator pencils (or S-pseudospectra of linear operators) defined by non-strict inequality in a Hilbert space. Inspired by Böttcher’s result (J Integral Equ Appl 6(3):267–301, 1994), we show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Afrika mathematica 2023-12, Vol.34 (4), Article 63
Hauptverfasser: Ammar, Aymen, Bouchekoua, Ameni, Jeribi, Aref
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to introduce and study some basic proprieties of the pseudospectra of linear operator pencils (or S-pseudospectra of linear operators) defined by non-strict inequality in a Hilbert space. Inspired by Böttcher’s result (J Integral Equ Appl 6(3):267–301, 1994), we show that the S-resolvent of a bounded operator acting in Hilbert space cannot have constant norm on any open set where S is not invertible. After that, we characterize the S-pseudospectrum of bounded linear operator by means the S-spectra of all perturbed operators with perturbations that have norms strictly less than ε .
ISSN:1012-9405
2190-7668
DOI:10.1007/s13370-023-01103-2