The pseudospectra of linear operator pencils in a Hilbert space
The purpose of this paper is to introduce and study some basic proprieties of the pseudospectra of linear operator pencils (or S-pseudospectra of linear operators) defined by non-strict inequality in a Hilbert space. Inspired by Böttcher’s result (J Integral Equ Appl 6(3):267–301, 1994), we show tha...
Gespeichert in:
Veröffentlicht in: | Afrika mathematica 2023-12, Vol.34 (4), Article 63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this paper is to introduce and study some basic proprieties of the pseudospectra of linear operator pencils (or S-pseudospectra of linear operators) defined by non-strict inequality in a Hilbert space. Inspired by Böttcher’s result (J Integral Equ Appl 6(3):267–301, 1994), we show that the S-resolvent of a bounded operator acting in Hilbert space cannot have constant norm on any open set where
S
is not invertible. After that, we characterize the S-pseudospectrum of bounded linear operator by means the S-spectra of all perturbed operators with perturbations that have norms strictly less than
ε
. |
---|---|
ISSN: | 1012-9405 2190-7668 |
DOI: | 10.1007/s13370-023-01103-2 |