Liquid‐Metal‐Assisted Programmed Galvanic Engineering of Core–shell Nanohybrids for Microwave Absorption
Core–shell nanostructures have received widespread attention because of their potential usage in various technological and scientific fields. However, they still face significant challenges in terms of fabrication of core–shell nanostructure libraries on a controlled, and even programmed scale. This...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-08, Vol.33 (34), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Core–shell nanostructures have received widespread attention because of their potential usage in various technological and scientific fields. However, they still face significant challenges in terms of fabrication of core–shell nanostructure libraries on a controlled, and even programmed scale. This study proposes a general approach to systematically fabricate core–shell nanohybrids using liquid‐metal Ga alloys as reconfigurable templates, and the initiation of a local galvanic replacement reaction is demonstrated utilizing an ultrasonic system. Under ultrasonic agitation, the hydrated gallium oxides generated on the liquid metal droplets, simultaneously delaminated themselves from the interfaces. Subsequently, single‐metal or bimetallic components are deposited on fresh smooth Ga‐based alloys via galvanic reactions to form unique core–shell metal/metal nanohybrids. Controlled and quantitative regulation of the diversity of the non‐homogeneous nanoparticle shell layer composition is achieved. The obtained core–shell nanostructures are used as efficient microwave absorbers to dissipate unwanted electromagnetic wave pollution. The effective absorption bands (90% absorption) of core–shell GaNi and GaCoNi nanohybrids are 3.92 and 3.8 GHz at a thickness of 1.4 mm, respectively. This general and advanced strategy enables the growth of other oxides or sulfides by spontaneous interfacial redox reactions for the fabrication of functional materials in the future.
This study aims to develop a general programmable strategy for fabricating complex core–shell nanohybrids by configuring galvanic replacement reactions in a liquid‐metal emulsion system. The synthesized core–shell nanostructures are applied as efficient microwave absorbers for dissipating unwanted electromagnetic (EM) wave pollution. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202302172 |