Injectable 3D‐Printed Porous Scaffolds for Adipose Stem Cell Delivery and Endometrial Regeneration

Stem‐cell‐based therapeutic strategies are promising in the clinical treatment of intrauterine adhesions (IUAs), while endometrial regeneration still hardly restores the structure and function of the endometrium because of the inadequate microenvironment for the grafted stem cells and subsequent lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-08, Vol.33 (34), p.n/a
Hauptverfasser: Lu, Shun, Wang, Xiaocheng, Li, Wenzhao, Zu, Yan, Xiao, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem‐cell‐based therapeutic strategies are promising in the clinical treatment of intrauterine adhesions (IUAs), while endometrial regeneration still hardly restores the structure and function of the endometrium because of the inadequate microenvironment for the grafted stem cells and subsequent limited therapeutic efficiency. Herein, an injectable porous hydrogel scaffold (PH scaffold) with customizable shapes is presented by using a microfluidic‐based 3D printing technique for adipose‐derived stem cells (ADSCs) delivery to enhance endometrial regeneration. These scaffolds display a controllable interconnected porous structure, which not only facilitates the encapsulation of ADSCs within the scaffold but also supports the recovery to their original shapes after injection. Furthermore, the cell viability of the laden ADSCs is well‐maintained post‐injection, exhibiting promotive effects on cell migration, proliferation, and tube formation. Based on these features, an ADSCs‐laden PH scaffold with a hollow endometrium‐mimicking morphology is designed and in situ injected into the damaged endometrium in rats of IUAs. These results show that the ADSCs‐laden PH scaffolds can enhance functional endometrial regeneration by suppressing the inflammatory response, promoting cell proliferation, and improving vascularization. Thus, it is believed that such unique 3D‐printed porous scaffolds are promising candidates for cell delivery, which also provides a minimally‐invasive and effective strategy for endometrial regeneration. An injectable porous hydrogel scaffold (PH scaffold) with customizable shapes is presented by using a microfluidic‐based 3D printing technique for adipose‐derived stem cells (ADSCs) delivery to enhance endometrial regeneration. The ADSCs‐laden PH scaffolds can enhance functional endometrial regeneration. Such unique 3D‐printed porous scaffolds are promising candidates for cell delivery, which also provides a minimally‐invasive and effective strategy for endometrial regeneration.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202303368