Reduced Markovian Models of Dynamical Systems
Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Giorgini, Ludovico Theo Souza, Andre N Schmid, Peter J |
description | Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of timescales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto-Sivashinky equations and data sampled from fluid-flow experiments via Particle-Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2854681757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854681757</sourcerecordid><originalsourceid>FETCH-proquest_journals_28546817573</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDUpNKU1OTVHwTSzKzi_LTMxT8M1PSc0pVshPU3CpzEvMzUxOzFEIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLUxMzC0NzU3Nj4lQBAKfyMeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854681757</pqid></control><display><type>article</type><title>Reduced Markovian Models of Dynamical Systems</title><source>Free E- Journals</source><creator>Giorgini, Ludovico Theo ; Souza, Andre N ; Schmid, Peter J</creator><creatorcontrib>Giorgini, Ludovico Theo ; Souza, Andre N ; Schmid, Peter J</creatorcontrib><description>Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of timescales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto-Sivashinky equations and data sampled from fluid-flow experiments via Particle-Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Dynamical systems ; Graph theory ; Time dependence</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Giorgini, Ludovico Theo</creatorcontrib><creatorcontrib>Souza, Andre N</creatorcontrib><creatorcontrib>Schmid, Peter J</creatorcontrib><title>Reduced Markovian Models of Dynamical Systems</title><title>arXiv.org</title><description>Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of timescales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto-Sivashinky equations and data sampled from fluid-flow experiments via Particle-Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Dynamical systems</subject><subject>Graph theory</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDUpNKU1OTVHwTSzKzi_LTMxT8M1PSc0pVshPU3CpzEvMzUxOzFEIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLUxMzC0NzU3Nj4lQBAKfyMeM</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Giorgini, Ludovico Theo</creator><creator>Souza, Andre N</creator><creator>Schmid, Peter J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240513</creationdate><title>Reduced Markovian Models of Dynamical Systems</title><author>Giorgini, Ludovico Theo ; Souza, Andre N ; Schmid, Peter J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28546817573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Dynamical systems</topic><topic>Graph theory</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Giorgini, Ludovico Theo</creatorcontrib><creatorcontrib>Souza, Andre N</creatorcontrib><creatorcontrib>Schmid, Peter J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giorgini, Ludovico Theo</au><au>Souza, Andre N</au><au>Schmid, Peter J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reduced Markovian Models of Dynamical Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-05-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of timescales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto-Sivashinky equations and data sampled from fluid-flow experiments via Particle-Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2854681757 |
source | Free E- Journals |
subjects | Algorithms Clustering Dynamical systems Graph theory Time dependence |
title | Reduced Markovian Models of Dynamical Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reduced%20Markovian%20Models%20of%20Dynamical%20Systems&rft.jtitle=arXiv.org&rft.au=Giorgini,%20Ludovico%20Theo&rft.date=2024-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2854681757%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854681757&rft_id=info:pmid/&rfr_iscdi=true |