Reduced Markovian Models of Dynamical Systems

Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Giorgini, Ludovico Theo, Souza, Andre N, Schmid, Peter J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leveraging recent work on data-driven methods for constructing a finite state space Markov process from dynamical systems, we address two problems for obtaining further reduced statistical representations. The first problem is to extract the most salient reduced-order dynamics for a given timescale by using a modified clustering algorithm from network theory. The second problem is to provide an alternative construction for the infinitesimal generator of a Markov process that respects statistical features over a large range of timescales. We demonstrate the methodology on three low-dimensional dynamical systems with stochastic and chaotic dynamics. We then apply the method to two high-dimensional dynamical systems, the Kuramoto-Sivashinky equations and data sampled from fluid-flow experiments via Particle-Image Velocimetry. We show that the methodology presented herein provides a robust reduced-order statistical representation of the underlying system.
ISSN:2331-8422