On Singular Control for Lévy Processes

We revisit the classical singular control problem of minimizing running and controlling costs. Existing studies have shown the optimality of a barrier strategy when driven by Brownian motion or Lévy processes with one-sided jumps. Under the assumption that the running cost function is convex, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2023-08, Vol.48 (3), p.1213-1234
1. Verfasser: Noba, Kei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the classical singular control problem of minimizing running and controlling costs. Existing studies have shown the optimality of a barrier strategy when driven by Brownian motion or Lévy processes with one-sided jumps. Under the assumption that the running cost function is convex, we show the optimality of a barrier strategy for a general class of Lévy processes. Funding: This work was supported by the Japan Society for the Promotion of Science [Grants 18J12680, 19H01791, 20K035758, 21K13807, and JPJSBP120209921] and a University of Queensland start-up grant.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.2022.1298