On Singular Control for Lévy Processes
We revisit the classical singular control problem of minimizing running and controlling costs. Existing studies have shown the optimality of a barrier strategy when driven by Brownian motion or Lévy processes with one-sided jumps. Under the assumption that the running cost function is convex, we sho...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2023-08, Vol.48 (3), p.1213-1234 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revisit the classical singular control problem of minimizing running and controlling costs. Existing studies have shown the optimality of a barrier strategy when driven by Brownian motion or Lévy processes with one-sided jumps. Under the assumption that the running cost function is convex, we show the optimality of a barrier strategy for a general class of Lévy processes.
Funding:
This work was supported by the Japan Society for the Promotion of Science [Grants 18J12680, 19H01791, 20K035758, 21K13807, and JPJSBP120209921] and a University of Queensland start-up grant. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.2022.1298 |