Finite-sample complexity of sequential Monte Carlo estimators

We present bounds for the finite-sample error of sequential Monte Carlo samplers on static spaces. Our approach explicitly relates the performance of the algorithm to properties of the chosen sequence of distributions and mixing properties of the associated Markov kernels. This allows us to give the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2023-06, Vol.51 (3), p.1357
Hauptverfasser: Marion, Joe, Mathews, Joseph, Schmidler, Scott C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present bounds for the finite-sample error of sequential Monte Carlo samplers on static spaces. Our approach explicitly relates the performance of the algorithm to properties of the chosen sequence of distributions and mixing properties of the associated Markov kernels. This allows us to give the first finite-sample comparison to other Monte Carlo schemes. We obtain bounds for the complexity of sequential Monte Carlo approximations for a variety of target distributions such as finite spaces, product measures and log-concave distributions including Bayesian logistic regression. The bounds obtained are within a logarithmic factor of similar bounds obtainable for Markov chain Monte Carlo.
ISSN:0090-5364
2168-8966
DOI:10.1214/23-AOS2295