Maximal regularity of the heat evolution equation on spatial local spaces and application to a singular limit problem of the Keller–Segel system

We consider the singular limit problem for the Cauchy problem of the (Patlak–) Keller–Segel system of parabolic-parabolic type. The problem is considered in the uniformly local Lebesgue spaces and the singular limit problem as the relaxation parameter τ goes to infinity, the solution to the Keller–S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2023-10, Vol.387 (1-2), p.389-431
Hauptverfasser: Ogawa, Takayoshi, Suguro, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the singular limit problem for the Cauchy problem of the (Patlak–) Keller–Segel system of parabolic-parabolic type. The problem is considered in the uniformly local Lebesgue spaces and the singular limit problem as the relaxation parameter τ goes to infinity, the solution to the Keller–Segel equation converges to a solution to the drift-diffusion system in the strong uniformly local topology. For the proof, we follow the former result due to Kurokiba–Ogawa [ 20 – 22 ] and we establish maximal regularity for the heat equation over the uniformly local Lebesgue and Morrey spaces which are non-UMD Banach spaces and apply it for the strong convergence of the singular limit problem in the scaling critical local spaces.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-022-02469-7