Curvature and Chaos in the Defocusing Parameteric Nonlinear Schrodinger System
The parametric nonlinear Schrodinger equation models a variety of parametrically forced and damped dispersive waves. For the defocusing regime, we derive a normal velocity for the evolution of curved dark-soliton fronts that represent a \(\pi\)-phase shift across a thin interface. We establish that...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The parametric nonlinear Schrodinger equation models a variety of parametrically forced and damped dispersive waves. For the defocusing regime, we derive a normal velocity for the evolution of curved dark-soliton fronts that represent a \(\pi\)-phase shift across a thin interface. We establish that depending upon the strength of parametric term the normal velocity evolution can transition from a curvature driven flow to motion against curvature regularized by surface diffusion of curvature. In the former case interfacial length shrinks, while in the later the interface length generically grows until self-intersection followed by a transition to chaotic motion. |
---|---|
ISSN: | 2331-8422 |