Optimal Closed Loop Control of G2V/V2G Action Using Model Predictive Controller
This paper has developed a closed-loop control algorithm to operate the G2V/V2G action, tested under varying battery voltage conditions and load and source power differences. Under V2G action, to maintain total harmonic distortion under minimum level and grid frequency under the standard limit, a Mo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper has developed a closed-loop control algorithm to operate the G2V/V2G action, tested under varying battery voltage conditions and load and source power differences. Under V2G action, to maintain total harmonic distortion under minimum level and grid frequency under the standard limit, a Model predictive controller (MPC) has been used to control the gate driver circuit of the inverter. The state space model of the plant has been created using the system identification toolbox, and the MPC Controller block has been designed using the Model Predictive Control Toolbox of MATLAB. The proposed methodology is tested using MATLAB/Simulink and OPAL-RT (OP4510) in a real-time environment. This methodology reduces %THD to less than 0.5%, improves waveform quality of grid voltage, inverter output voltage, grid current, and inverter output current to nearly 99%, and maintains the grid frequency in standard limit while in G2V/V2G action. |
---|---|
ISSN: | 2331-8422 |