Ni/Al multilayer reactions on nanostructured silicon substrates

Fast energy release, which is a fundamental property of reactive multilayer systems, can be used in a wide field of applications. For most applications, a self-propagating reaction and adhesion between the multilayers and substrate are necessary. In this work, a distinct approach for achieving self-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2023-08, Vol.58 (31), p.12811-12826
Hauptverfasser: Jaekel, Konrad, Sauni Camposano, Yesenia Haydee, Matthes, Sebastian, Glaser, Marcus, Schaaf, Peter, Bergmann, Jean Pierre, Müller, Jens, Bartsch, Heike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fast energy release, which is a fundamental property of reactive multilayer systems, can be used in a wide field of applications. For most applications, a self-propagating reaction and adhesion between the multilayers and substrate are necessary. In this work, a distinct approach for achieving self-propagating reactions and adhesion between deposited Ni/Al reactive multilayers and silicon substrate is demonstrated. The silicon surface consists of random structures, referred to as silicon grass, which were created by deep reactive ion etching. Using the etching process, structure units of heights between 8 and 13 µm and density between 0.5 and 3.5 structures per µm 2 were formed. Ni and Al layers were alternatingly deposited in the stoichiometric ratio of 1:1 using sputtering, to achieve a total thickness of 5 µm. The analysis of the reaction and phase transformation was done with high-speed camera, high-speed pyrometer, and X-ray diffractometer. Cross-sectional analysis showed that the multilayers grew only on top of the silicon grass in the form of inversed cones, which enabled adhesion between the silicon grass and the reacted multilayers. A self-propagating reaction on silicon grass was achieved, due to the thermally isolating air pockets present around these multilayer cones. The velocity and temperature of the reaction varied according to the structure morphology. The reaction parameters decreased with increasing height and decreasing density of the structures. To analyze the exact influence of the morphology, further investigations are needed.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-023-08794-9