Unified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problems

A unified framework for fourth-order semilinear problems with trilinear nonlinearity and general sources allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in the piecewise energy and weaker Sobolev norms unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2023-08, Vol.154 (3-4), p.323-368
Hauptverfasser: Carstensen, Carsten, Nataraj, Neela, Remesan, Gopikrishnan C., Shylaja, Devika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A unified framework for fourth-order semilinear problems with trilinear nonlinearity and general sources allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in the piecewise energy and weaker Sobolev norms under minimal hypotheses. Applications include the stream function vorticity formulation of the incompressible 2D Navier-Stokes equations and the von Kármán equations with Morley, discontinuous Galerkin, C 0 interior penalty, and weakly over-penalized symmetric interior penalty schemes. The proposed new discretizations consider quasi-optimal smoothers for the source term and smoother-type modifications inside the nonlinear terms.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-023-01356-w