Unified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problems
A unified framework for fourth-order semilinear problems with trilinear nonlinearity and general sources allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in the piecewise energy and weaker Sobolev norms unde...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2023-08, Vol.154 (3-4), p.323-368 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A unified framework for fourth-order semilinear problems with trilinear nonlinearity and general sources allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in the piecewise energy and weaker Sobolev norms under minimal hypotheses. Applications include the stream function vorticity formulation of the incompressible 2D Navier-Stokes equations and the von Kármán equations with Morley, discontinuous Galerkin,
C
0
interior penalty, and weakly over-penalized symmetric interior penalty schemes. The proposed new discretizations consider quasi-optimal smoothers for the source term and smoother-type modifications inside the nonlinear terms. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-023-01356-w |