A Unifying Framework for the ν-Tamari Lattice and Principal Order Ideals in Young’s Lattice

We present a unifying framework in which both the ν -Tamari lattice, introduced by Préville-Ratelle and Viennot, and principal order ideals in Young’s lattice indexed by lattice paths ν , are realized as the dual graphs of two combinatorially striking triangulations of a family of flow polytopes whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2023-06, Vol.43 (3), p.479-504
Hauptverfasser: von Bell, Matias, González D’León, Rafael S., Mayorga Cetina, Francisco A., Yip, Martha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a unifying framework in which both the ν -Tamari lattice, introduced by Préville-Ratelle and Viennot, and principal order ideals in Young’s lattice indexed by lattice paths ν , are realized as the dual graphs of two combinatorially striking triangulations of a family of flow polytopes which we call the ν -caracol flow polytopes. The first triangulation gives a new geometric realization of the ν -Tamari complex introduced by Ceballos et al. We use the second triangulation to show that the h ∗ -vector of the ν -caracol flow polytope is given by the ν -Narayana numbers, extending a result of Mészáros when ν is a staircase lattice path. Our work generalizes and unifies results on the dual structure of two subdivisions of a polytope studied by Pitman and Stanley.
ISSN:0209-9683
1439-6912
DOI:10.1007/s00493-023-00022-x